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A Dataset Partition

NTU RGB+D 120 [4] is a large-scale dataset with 3D joints annotations for
human action recognition task. This dataset contains 113,945 skeleton sequences
over 120 action classes captured from 106 distinct subjects and 32 different cam-
era setups. Each skeleton graph contains N = 25 body joints as nodes (see Fig. 1a)
in each frame, with their 3D locations in space as the initial features. Each frame
of the action contains 1 to 2 subjects. For 2 subjects condition, to demonstrate
the effectiveness of our core strategy, we just follow the original ST-GCN that
encodes each skeleton independently and averages them. Our experiments use
120 action categories, including 80, 20 and 20 as training, validation and test
categories. For each category, we randomly take 60 samples and 30 samples,
denoted as two subsets “NTU-S” and “NTU-T”, respectively. Here are the
concrete train/validation/test classes:

1. Train: [0, 1,2,3,5,6, 7,8, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27,
28, 29, 31, 33, 34, 36, 39, 40, 41, 46, 48, 49, 52, 53, 55, 58, 63, 64, 65, 66, 68,
70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 91, 93,
94, 96, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110, 113, 114, 115, 117,

118 ]

2. Validation: [ 15, 35, 37, 38, 42, 47, 50, 51, 54, 56, 57, 59, 60, 61, 67, 69, 92
95, 97, 116 |

3. Test: [ 4,9, 12, 14, 24, 26, 30, 32, 43, 44, 45, 62, 75, 83, 86, 100, 102, 111,
112, 119 ]
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Fig. 1: The used skeletons in our experiments.

Please see the website of NTU RGB+D 120 for more details’.

The dataset contains 260,232 videos over 400 classes, where each skeleton
graph has 18 body joints ( see Fig. 1b) after pose estimation, along with their
2D spatial coordinates and the prediction confidence score from OpenPose [1]
as the initial joint features. At each frame, the number of skeletons is capped at
2 in each action skeleton, and skeletons with lower overall confidence scores are
discarded. In our experiments, we only use the first 120 actions with 100 samples
per class. The numbers of training/validation/test categories are 80/20/20. Here
are the concrete train/validation/test classes:

1. Train: [ 1, 2, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 43, 47, 48, 49, 50, 51, 52, 58,
59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84,
85, 86, 87, 89, 90, 91, 93, 95, 97, 102, 105, 109, 110, 111, 113, 117, 118, 119 ]

2. Validation: [ 4, 7, 10, 36, 37, 42, 44, 45, 55, 56, 61, 88, 94, 98, 103, 104,
106, 108, 116, 120 ]

3. Test: [ 3, 22, 35, 46, 53, 54, 57, 60, 62, 80, 81, 92, 96, 99, 100, 101, 107, 112,
114, 115 ]

The origin video dataset can be seen from the public link®. To download the
skeleton data, please see this public link®.

B More Discussion for Baselines

Why NGM |[2] is a competitive baseline?

" https://rosel.ntu.edu.sg/dataset /actionRecognition,

8 https://deepmind.com/research/open-source/kinetics

9 https://github.com/open-mmlab/mmskeleton /blob/master/doc/
SKELETON_DATA.md
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Fig.2: (a). The test performances given different scale parameters in PairNorm
[9] strategy. (b) .The test performances given different drop rates in Dropedge [5]
strategy.

NGM (Neural Graph Matching) tries to solve few-shot action recognition
with graph matching. Due to the lack of official implementation, we try our best
to reproduce an enhanced version in our spatial-temporal alignment framework.
NGM jointly learns a graph generator and a graph matching metric function
in an end-to-end fashion to optimize the few-shot learning objective directly.
In graph generator, they extract the spatial elements as graph nodes and learn
adaptive edges to construct the scene graph from each frame. With graph match-
ing metric function, they generate graph tensor following the calculation of node
similarities. However, for our skeleton sequences, there have been skeleton graphs
with pre-defined edges. Therefore, to compare with NGM, we mainly reproduce
the Neural Graph Matching derived by edge weights within a graph, where these
edge weights is replaced by our self-attention mechanism. Furthermore, our im-
plementation is based on time alignment methods, which further improves the
enhanced NGM.

How to select optimal hyper-parameter for PairNorm?

PairNorm [9] aims to tackle over-smoothing in graph neural networks (GNNs).
By centering and rescaling node’s representations, PairNorm uses a normaliza-
tion after graph convolution layer to prevent all node embeddings from becom-
ing too similar. In the official implementation'®, the scale of input is a hyper-
parameter. We perform 5-way-1-shot task on NTU-T, with ST-GCN as back-
bone and DTW as time alignment method. From Fig. 2a, the optimal selection
is around 1, which is used scaling value for all experiments.

How does Dropedge impact model’s performance?

Both PairNorm and DropEdge are designed to alleviate the over-smoothing
problem in large noisy graphs. DropEdge [5] randomly drops a few edges in
input graphs to make the nodes aggregation from their neighbor diverse. Fig. 2b
demonstrate the test performances with different drop rates. Only dropping 10%
edges (24*0.1=2.4 edges) can damage the graph structure. Note that the experi-

10 https://github.com/LingxiaoShawn /PairNorm
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ments are performed on 5-way-1-shot task on NTU-T, with ST-GCN as backbone
and DTW as time alignment method.

C More Discussion for Backbones

Can smaller backbones alleviate the over-smoothing problem?

ST-GCN]|(blocks=4)|(blocks=7)|(blocks=10)
seed 1 71.19 71.71 69.63
seed 2 70.58 71.78 73.15
seed 3 73.23 71.03 70.79
Mean 71.67 71.51 71.19

Table 1: Different performances with varying blocks of ST-GCN backbone. These
experiments are performed with 5-way-1-shot task using ProtoNet baseline on
NTU-T.

Methods | NTU-T | NTU-S |Kinetics
LSTM |76.840.9(|80.3+40.9]47.340.4
ST-GCN [82.440.2|84.340.3|46.840.4
2s-AGCN|81.940.1(84.240.1]50.5+0.2
MS-G3D [82.34+0.3/85.340.1|50.040.3
Table 2: The 5-way-5-shot performances using different backbones with ProtoNet
only.

To alleviate the over-smoothing problem, a simple idea is reducing the layers
of the encoder backbone to decrease the number of graph convolution. In the
released model of ST-GCN [8], there are 10 spatial-temporal convolution blocks
capturing the joint interactions ( the longest distance among skeleton joints ap-
proximates 10). In Tab. 1, we can see the released backbone (10 blocks) has a
slight performance dropping compared with fewer blocks. To explore the rea-
son behind it, we further visualize the intra-skeleton similarity by heatmap (see
Fig. 3). From Fig. 3, we can observe that the backbone with 4 blocks has the
lowest over-smoothing due to limited graph convolution. With the increasing of
blocks, the over-smoothing is magnified. However, the reduction of spatial con-
volution and temporal convolution could not capture enough joint interactions,
which is why the smaller backbones only achieve slight improvement with the
alleviated over-smoothing. Inspired by this, our strategy is to keep the full blocks
of ST-GCN to capture the joint interactions and alleviate the over-smoothing in
the meantime.
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Fig. 3: The similarity heatmaps with varying layers of ST-GCN backbone. These
experiments are performed with 5-way-1-shot task using Cosine baseline on
NTU-T.

Furthermore, the small size backbone like LSTM [3] is inferior compared with
ST-GCNs due to the lack of spatial encoding (see Tab. 2).

D Detailed Visualization Results

More visualization details for our spatial disentanglement strategy.

In this section, we provide more visualization results for different spatial re-
cover strategies. We investigate “None” (Fig. 4), “DropEdge” (Fig. 6), “PairNorm
(Fig. 5) and “RankMax” (Ours, Fig. 7) and provide more detailed heatmaps.
Note that all the spatial recover strategies are incorporated with DTW [6] +
ProtoNet [7] on NTU-T dataset using 5-way-1-shot task.
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Fig. 4: The intra-skeleton joints similarity heatmaps without any spatial recovery
strategies. (a)&(b)&(c). The joints located in the head are disentangled rather
than hand joints or feed joints, while these head joints usually denote less action
information in the dataset NTU-RGB+D 120. Moreover, the over-smoothing
problem is serious especially in the third figure. (d). Adjacent joints such as
{0,1,2,3,4} and {14, 15,16, 17} are over smoothed in graph convolution process.
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Fig. 5: The intra-skeleton joints similarity heatmaps according to PairNorm [9]
strategy. (a). Only the “hand” joint (number 7) is disentangled from others.
(b). Only the “elbow” joint (number 3) is disentangled from others. (c¢) The left
“hand” and right “hand” (numbers 4 and 7) are disentangled from others. (d).
The unimportant joints located in the head (number 14, 15) are disentangled
from others, which may harm the skeleton matching.
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Fig.6: The intra-skeleton joints similarity heatmaps according to DropEdge [5]
strategy. (a)&(b). Almost all joints have similar representations, which denotes
that randomly dropping edges does not alleviate the over-smoothed graph con-
volution but rather may lead to the contrary due to destroyed skeleton structure.
(c). The right “elbow”, right “hand”, left “hand” (number 3, 4 and 7, respec-
tively) are disentangled from others, but the lower limb joints (number 8-13)
are over smoothed. (d). The head joint (number 0) and left “elbow” (number 6)
are disentangled from others, but the lower limb joints (number 8-13) are over
smoothed.
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Fig. 7: The intra-skeleton joints similarity heatmaps according to our RankMax
strategy. (a)&(b). The representative joints such as hands (number 4 and 7)
and feet (number 13) are disentangled from other joints, providing disentangled
spatial features for skeleton matching. (¢)&(d). Almost all joints are disentangled
given higher weight A.
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