Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
O
OvoTools
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
林帅浩
OvoTools
Commits
1c24e674
Commit
1c24e674
authored
Mar 12, 2019
by
IlyaOvodov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
MBloss without replacement, fix LogTrainingResults, TensorboardLogger
parent
a7d4a324
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
8 additions
and
6 deletions
+8
-6
ignite_tools.py
ovotools/ignite_tools.py
+5
-3
pytorch_tools.py
ovotools/pytorch_tools.py
+3
-3
No files found.
ovotools/ignite_tools.py
View file @
1c24e674
...
@@ -103,13 +103,12 @@ class LogTrainingResults:
...
@@ -103,13 +103,12 @@ class LogTrainingResults:
self
.
params
=
params
self
.
params
=
params
def
__call__
(
self
,
engine
,
event
):
def
__call__
(
self
,
engine
,
event
):
if
event
==
Events
.
ITERATION_COMPLETED
and
engine
.
state
.
epoch
!=
1
:
return
for
key
,
loader
in
self
.
loaders_dict
.
items
():
for
key
,
loader
in
self
.
loaders_dict
.
items
():
self
.
evaluator
.
run
(
loader
)
self
.
evaluator
.
run
(
loader
)
for
k
,
v
in
self
.
evaluator
.
state
.
metrics
.
items
():
for
k
,
v
in
self
.
evaluator
.
state
.
metrics
.
items
():
engine
.
state
.
metrics
[
key
+
':'
+
k
]
=
v
engine
.
state
.
metrics
[
key
+
':'
+
k
]
=
v
self
.
best_model_buffer
.
save_if_best
(
engine
)
if
self
.
best_model_buffer
:
self
.
best_model_buffer
.
save_if_best
(
engine
)
if
event
==
Events
.
ITERATION_COMPLETED
:
if
event
==
Events
.
ITERATION_COMPLETED
:
str
=
"Epoch:{}.{}
\t
"
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
)
str
=
"Epoch:{}.{}
\t
"
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
)
else
:
else
:
...
@@ -158,3 +157,6 @@ class TensorBoardLogger:
...
@@ -158,3 +157,6 @@ class TensorBoardLogger:
self
.
writer
.
add_scalar
(
n
,
v
,
self
.
call_count
)
self
.
writer
.
add_scalar
(
n
,
v
,
self
.
call_count
)
else
:
else
:
self
.
writer
.
add_scalars
(
n
,
d
,
self
.
call_count
)
self
.
writer
.
add_scalars
(
n
,
d
,
self
.
call_count
)
for
path
,
writer
in
self
.
writer
.
all_writers
.
items
():
writer
.
flush
()
ovotools/pytorch_tools.py
View file @
1c24e674
...
@@ -60,7 +60,7 @@ class MarginBaseLoss:
...
@@ -60,7 +60,7 @@ class MarginBaseLoss:
with
self
.
timer
.
watch
(
'time.d_ij'
):
with
self
.
timer
.
watch
(
'time.d_ij'
):
assert
len
(
pred_embeddings
.
shape
)
==
2
,
pred_embeddings
.
shape
assert
len
(
pred_embeddings
.
shape
)
==
2
,
pred_embeddings
.
shape
norm
=
(
pred_embeddings
**
2
)
.
sum
(
1
)
norm
=
(
pred_embeddings
**
2
)
.
sum
(
1
)
self
.
d_ij
=
norm
.
view
(
-
1
,
1
)
+
norm
.
view
(
1
,
-
1
)
-
2.0
*
torch
.
mm
(
pred_embeddings
,
torch
.
transpose
(
pred_embeddings
,
0
,
1
))
self
.
d_ij
=
norm
.
view
(
-
1
,
1
)
+
norm
.
view
(
1
,
-
1
)
-
2.0
*
torch
.
mm
(
pred_embeddings
,
torch
.
transpose
(
pred_embeddings
,
0
,
1
))
#https://discuss.pytorch.org/t/efficient-distance-matrix-computation/9065/8
self
.
d_ij
=
torch
.
sqrt
(
torch
.
clamp
(
self
.
d_ij
,
min
=
0.0
)
+
1.0e-8
)
self
.
d_ij
=
torch
.
sqrt
(
torch
.
clamp
(
self
.
d_ij
,
min
=
0.0
)
+
1.0e-8
)
for
i_start
in
range
(
0
,
n
,
self
.
params
.
data
.
samples_per_class
):
# start of class block
for
i_start
in
range
(
0
,
n
,
self
.
params
.
data
.
samples_per_class
):
# start of class block
...
@@ -72,12 +72,12 @@ class MarginBaseLoss:
...
@@ -72,12 +72,12 @@ class MarginBaseLoss:
weights
[
i
]
=
0
# dont join with itself
weights
[
i
]
=
0
# dont join with itself
# select positive pair
# select positive pair
weights_same
=
weights
[
i_start
:
i_end
]
# i-th element already excluded
weights_same
=
weights
[
i_start
:
i_end
]
# i-th element already excluded
j
=
np
.
random
.
choice
(
range
(
i_start
,
i_end
),
p
=
weights_same
/
np
.
sum
(
weights_same
)
)
j
=
np
.
random
.
choice
(
range
(
i_start
,
i_end
),
p
=
weights_same
/
np
.
sum
(
weights_same
)
,
replace
=
False
)
assert
j
!=
i
assert
j
!=
i
loss
+=
(
self
.
params
.
mb_loss
.
alpha
+
(
self
.
d_ij
[
i
,
j
]
-
self
.
model
.
mb_loss_beta
))
.
clamp
(
min
=
0
)
#https://arxiv.org/pdf/1706.07567.pdf
loss
+=
(
self
.
params
.
mb_loss
.
alpha
+
(
self
.
d_ij
[
i
,
j
]
-
self
.
model
.
mb_loss_beta
))
.
clamp
(
min
=
0
)
#https://arxiv.org/pdf/1706.07567.pdf
# select neg. pait
# select neg. pait
weights
=
np
.
delete
(
weights
,
np
.
s_
[
i_start
:
i_end
],
axis
=
0
)
weights
=
np
.
delete
(
weights
,
np
.
s_
[
i_start
:
i_end
],
axis
=
0
)
k
=
np
.
random
.
choice
(
range
(
0
,
n
-
self
.
params
.
data
.
samples_per_class
),
p
=
weights
/
np
.
sum
(
weights
))
k
=
np
.
random
.
choice
(
range
(
0
,
n
-
self
.
params
.
data
.
samples_per_class
),
p
=
weights
/
np
.
sum
(
weights
)
,
replace
=
False
)
if
k
>=
i_start
:
if
k
>=
i_start
:
k
+=
self
.
params
.
data
.
samples_per_class
k
+=
self
.
params
.
data
.
samples_per_class
loss
+=
(
self
.
params
.
mb_loss
.
alpha
-
(
self
.
d_ij
[
i
,
k
]
-
self
.
model
.
mb_loss_beta
))
.
clamp
(
min
=
0
)
#https://arxiv.org/pdf/1706.07567.pdf
loss
+=
(
self
.
params
.
mb_loss
.
alpha
-
(
self
.
d_ij
[
i
,
k
]
-
self
.
model
.
mb_loss_beta
))
.
clamp
(
min
=
0
)
#https://arxiv.org/pdf/1706.07567.pdf
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment