Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
O
OvoTools
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
林帅浩
OvoTools
Commits
50d1d812
Commit
50d1d812
authored
Mar 22, 2019
by
IlyaOvodov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Save models to dir. Verbose argument.
parent
8cae81d8
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
8 deletions
+20
-8
ignite_tools.py
ovotools/ignite_tools.py
+20
-8
No files found.
ovotools/ignite_tools.py
View file @
50d1d812
import
copy
import
math
import
os
import
torch
import
ignite
from
ignite.engine
import
Events
...
...
@@ -65,12 +66,14 @@ class IgniteTimes:
class
BestModelBuffer
:
def
__init__
(
self
,
model
,
metric_name
,
params
,
minimize
=
True
,
save_to_file
=
True
):
def
__init__
(
self
,
model
,
metric_name
,
params
,
minimize
=
True
,
save_to_file
=
True
,
save_to_dir_suffix
=
None
,
verbose
=
1
):
self
.
model
=
model
assert
metric_name
self
.
metric_name
=
metric_name
assert
minimize
==
True
,
"Not implemented"
self
.
save_to_file
=
save_to_file
self
.
save_to_dir_suffix
=
save_to_dir_suffix
self
.
verbose
=
verbose
self
.
params
=
params
self
.
reset
()
...
...
@@ -85,18 +88,26 @@ class BestModelBuffer:
self
.
best_score
=
engine
.
state
.
metrics
[
self
.
metric_name
]
self
.
best_dict
=
copy
.
deepcopy
(
self
.
model
.
state_dict
())
self
.
best_epoch
=
engine
.
state
.
epoch
print
(
'model for {}={} dumped'
.
format
(
self
.
metric_name
,
self
.
best_score
))
if
self
.
verbose
:
print
(
'model for {}={} dumped'
.
format
(
self
.
metric_name
,
self
.
best_score
))
if
self
.
save_to_file
:
self
.
save_model
()
def
save_model
(
self
,
suffix
=
""
):
torch
.
save
(
self
.
best_dict
,
self
.
params
.
get_base_filename
()
+
suffix
+
'.t7'
)
def
save_model
(
self
,
file_suffix
=
"model"
):
if
self
.
save_to_dir_suffix
is
not
None
:
dir_name
=
self
.
params
.
get_base_filename
()
+
self
.
save_to_dir_suffix
os
.
makedirs
(
dir_name
,
exist_ok
=
True
)
file_name
=
os
.
path
.
join
(
dir_name
,
file_suffix
+
'.t7'
)
else
:
file_name
=
self
.
params
.
get_base_filename
()
+
file_suffix
+
'.t7'
torch
.
save
(
self
.
best_dict
,
file_name
)
def
restore
(
self
,
model
=
None
):
assert
self
.
best_dict
is
not
None
if
model
is
None
:
model
=
self
.
model
print
(
'model for {}={} on epoch {} restored'
.
format
(
self
.
metric_name
,
self
.
best_score
,
self
.
best_epoch
))
if
self
.
verbose
:
print
(
'model for {}={} on epoch {} restored'
.
format
(
self
.
metric_name
,
self
.
best_score
,
self
.
best_epoch
))
model
.
load_state_dict
(
self
.
best_dict
)
...
...
@@ -175,7 +186,8 @@ class ClrScheduler:
self
.
iterations_per_epoch
=
len
(
train_loader
)
self
.
min_lr
=
params
.
clr
.
min_lr
self
.
max_lr
=
params
.
clr
.
max_lr
self
.
best_model_buffer
=
BestModelBuffer
(
model
,
metric_name
,
params
,
minimize
=
minimize
,
save_to_file
=
False
)
self
.
best_model_buffer
=
BestModelBuffer
(
model
,
metric_name
,
params
,
minimize
=
minimize
,
save_to_file
=
False
,
save_to_dir_suffix
=
'.clr_models'
,
verbose
=
0
)
if
engine
:
self
.
attach
(
engine
)
...
...
@@ -188,7 +200,7 @@ class ClrScheduler:
if
(
self
.
cycle_index
==
0
and
self
.
iter_index
==
self
.
params
.
clr
.
warmup_epochs
*
self
.
iterations_per_epoch
or
self
.
cycle_index
>
0
and
self
.
iter_index
==
self
.
params
.
clr
.
period_epochs
*
self
.
iterations_per_epoch
):
if
self
.
cycle_index
>
0
:
self
.
best_model_buffer
.
save_model
(
'
.'
+
str
(
self
.
cycle_index
))
self
.
best_model_buffer
.
save_model
(
'
{:03}'
.
format
(
self
.
cycle_index
))
self
.
best_model_buffer
.
restore
()
self
.
best_model_buffer
.
reset
()
self
.
min_lr
*=
self
.
params
.
clr
.
scale_min_lr
...
...
@@ -247,6 +259,6 @@ def create_supervised_trainer(model, optimizer, loss_fn, metrics={},
engine
=
ignite
.
engine
.
Engine
(
_update
)
for
name
,
metric
in
metrics
.
items
():
metric
.
attach
(
engine
,
name
)
metric
.
attach
(
engine
,
'train:'
+
name
)
return
engine
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment