Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
O
OvoTools
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
林帅浩
OvoTools
Commits
53003683
Commit
53003683
authored
Oct 12, 2019
by
Ilya Ovodov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
params repr layout with margins
parent
b59c3474
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
192 additions
and
14 deletions
+192
-14
params.py
ovotools/params/params.py
+117
-14
test_d444b2.example.txt
ovotools/params/test_d444b2.example.txt
+75
-0
No files found.
ovotools/params/params.py
View file @
53003683
...
...
@@ -38,12 +38,33 @@ class AttrDict(OrderedDict):
assert
'.'
not
in
k
,
"AttrDict: attribute '"
+
k
+
"' is invalid ('.' char is not allowed)"
if
isinstance
(
v
,
dict
):
self
[
k
]
=
AttrDict
(
v
)
elif
isinstance
(
v
,
list
):
self
[
k
]
=
[
AttrDict
(
item
)
if
isinstance
(
item
,
dict
)
else
item
for
item
in
v
]
def
__repr__
(
self
):
return
(
'{
\n
'
+
'
\n
'
.
join
([
repr
(
x
[
0
])
+
' : '
+
repr
(
x
[
1
])
+
','
for
x
in
vars
(
self
)
.
items
()
if
not
x
[
0
]
.
startswith
(
'__'
)
and
x
[
0
]
!=
'data_root'
])
+
'
\n
}'
)
def
write_item
(
item
,
margin
=
'
\n
'
):
if
isinstance
(
item
,
dict
):
s
=
'{'
margin2
=
margin
+
' '
for
k
,
v
in
item
.
items
():
if
not
k
.
startswith
(
'__'
)
and
k
!=
'data_root'
:
s
+=
margin2
+
"'{0}': "
.
format
(
k
)
+
write_item
(
v
,
margin
=
margin2
)
+
","
if
item
.
items
():
s
+=
margin
s
+=
'}'
elif
isinstance
(
item
,
(
list
,
tuple
)):
s
=
'['
if
isinstance
(
item
,
list
)
else
'('
for
v
in
item
:
if
isinstance
(
v
,
dict
):
s
+=
margin
+
' '
else
:
s
+=
' '
s
+=
write_item
(
v
,
margin
=
margin
+
' '
)
+
","
s
+=
' '
+
(
']'
if
isinstance
(
item
,
list
)
else
')'
)
else
:
s
=
repr
(
item
)
return
s
return
write_item
(
self
)
def
has
(
self
,
name
):
'''
...
...
@@ -95,11 +116,10 @@ class AttrDict(OrderedDict):
print
(
'saved to '
+
params_fn
)
def
load_from_str
(
s
,
data_root
):
assert
len
(
s
)
>=
2
assert
s
[
0
][
0
]
==
'{'
and
s
[
-
1
][
-
2
:]
==
'}
\n
'
s
=
''
.
join
(
s
)
s
=
s
.
replace
(
'
\n
'
,
''
)
assert
len
(
s
)
>=
2
assert
s
[
0
][
0
]
==
'{'
assert
s
[
-
1
][
-
1
]
==
'}'
params
=
ast
.
literal_eval
(
s
)
if
data_root
:
params
.
data_root
=
data_root
...
...
@@ -121,13 +141,97 @@ class AttrDict(OrderedDict):
return
params
if
__name__
==
'__main__'
:
m
=
AttrDict
(
b
=
AttrDict
(
b1
=
"b1v"
,
b2
=
"qwe"
),
a
=
1
,
c
=
"qweqweqwe"
)
if
__name__
==
'__main__'
:
m
=
AttrDict
(
data_root
=
'abc'
,
model_name
=
'NN_results/segmentation/unet'
,
data
=
AttrDict
(
val_folds
=
(
4
,),
batch_size
=
100
,
resize
=
(
128
,
800
),
# H, W
crop
=
(
128
,
256
),
# H, W
train_augmentations
=
AttrDict
(
# HorizontalFlip = AttrDict(),
# RandomBrightnessContrast = AttrDict(),
),
crop_for_val
=
False
,
add_coordconv
=
False
,
),
model
=
AttrDict
(
type
=
'segmentation_models_pytorch.Unet'
,
params
=
AttrDict
(
encoder_name
=
'resnet34'
,
# 'se_resnext50_32x4d' 'resnet34'
encoder_weights
=
'imagenet'
,
),
# load_from = 'NN_results/segmentation/unet_66fa48/models/best.t7',
),
dann
=
AttrDict
(
use_dann
=
False
,
lambda_max
=
1.
,
epochs
=
40
,
weight
=
0.1
,
),
loss
=
[
AttrDict
(
type
=
'torch.nn.BCEWithLogitsLoss'
,
params
=
AttrDict
(),
),
AttrDict
(
type
=
'pytorch_toolbelt.losses.dice.DiceLoss'
,
params
=
AttrDict
(
mode
=
'multilabel'
,
log_loss
=
True
,
smooth
=
1
,
),
weight
=
0.5
,
),
],
optim
=
'torch.optim.SGD'
,
optim_params
=
AttrDict
(
lr
=
0.2
,
momentum
=
0.9
,
weight_decay
=
5e-4
,
# 0.001,
# nesterov = False,
),
lr_finder
=
AttrDict
(
iters_num
=
200
,
log_lr_start
=-
4
,
log_lr_end
=-
0
,
),
ls_cheduler
=
'torch.optim.lr_scheduler.ReduceLROnPlateau'
,
clr
=
AttrDict
(
warmup_epochs
=
1
,
min_lr
=
0.0002
,
max_lr
=
1e-1
,
period_epochs
=
40
,
scale_max_lr
=
0.95
,
scale_min_lr
=
0.95
,
),
ReduceLROnPlateau_params
=
AttrDict
(
mode
=
'min'
,
factor
=
0.5
,
patience
=
10
,
min_lr
=
2.e-4
,
),
StepLR_params
=
AttrDict
(
step_size
=
20
,
gamma
=
0.5
,
),
MultiStepLR_params
=
AttrDict
(
milestones
=
[
25
,
50
,
75
,
100
,
125
,
150
,
175
,
200
,
215
,
230
,
245
,
260
,
275
,
290
,
300
],
gamma
=
0.5
,
),
)
print
(
repr
(
m
))
fn
=
'test_'
+
m
.
hash
()
m
.
save
(
fn
)
mm
=
AttrDict
.
Load
(
fn
)
m
.
save
(
fn
,
can_overwrite
=
True
)
m
.
save
(
fn
+
'0'
,
can_overwrite
=
True
)
mm
=
AttrDict
.
load
(
fn
+
'.param.txt'
)
import
os
os
.
remove
(
fn
+
'.param.txt'
)
mm
.
save
(
fn
,
can_overwrite
=
True
)
print
(
m
)
print
(
mm
)
assert
str
(
m
)
==
str
(
mm
)
\ No newline at end of file
assert
str
(
m
)
==
str
(
mm
)
os
.
remove
(
fn
+
'.param.txt'
)
os
.
remove
(
fn
+
'0.param.txt'
)
ovotools/params/test_d444b2.example.txt
0 → 100644
View file @
53003683
{
'model_name': 'NN_results/segmentation/unet',
'data': {
'val_folds': ( 4, ),
'batch_size': 100,
'resize': ( 128, 800, ),
'crop': ( 128, 256, ),
'train_augmentations': {},
'crop_for_val': False,
'add_coordconv': False,
},
'model': {
'type': 'segmentation_models_pytorch.Unet',
'params': {
'encoder_name': 'resnet34',
'encoder_weights': 'imagenet',
},
},
'dann': {
'use_dann': False,
'lambda_max': 1.0,
'epochs': 40,
'weight': 0.1,
},
'loss': [
{
'type': 'torch.nn.BCEWithLogitsLoss',
'params': {},
},
{
'type': 'pytorch_toolbelt.losses.dice.DiceLoss',
'params': {
'mode': 'multilabel',
'log_loss': True,
'smooth': 1,
},
'weight': 0.5,
}, ],
'optim': 'torch.optim.SGD',
'optim_params': {
'lr': 0.2,
'momentum': 0.9,
'weight_decay': 0.0005,
},
'lr_finder': {
'iters_num': 200,
'log_lr_start': -4,
'log_lr_end': 0,
},
'ls_cheduler': 'torch.optim.lr_scheduler.ReduceLROnPlateau',
'clr': {
'warmup_epochs': 1,
'min_lr': 0.0002,
'max_lr': 0.1,
'period_epochs': 40,
'scale_max_lr': 0.95,
'scale_min_lr': 0.95,
},
'ReduceLROnPlateau_params': {
'mode': 'min',
'factor': 0.5,
'patience': 10,
'min_lr': 0.0002,
},
'StepLR_params': {
'step_size': 20,
'gamma': 0.5,
},
'MultiStepLR_params': {
'milestones': [ 25, 50, 75, 100, 125, 150, 175, 200, 215, 230, 245, 260, 275, 290, 300, ],
'gamma': 0.5,
},
}
hash: d444b2
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment