Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
O
OvoTools
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
林帅浩
OvoTools
Commits
b97a30ed
Commit
b97a30ed
authored
Apr 04, 2019
by
IlyaOvodov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
adaptiveLR v3
parent
a2fb35df
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
30 additions
and
21 deletions
+30
-21
adaptive_lr.py
ovotools/adaptive_lr.py
+30
-21
No files found.
ovotools/adaptive_lr.py
View file @
b97a30ed
...
...
@@ -4,10 +4,10 @@ import ignite
def
create_adaptive_supervised_trainer
(
model
,
optimizer
,
loss_fn
,
metrics
=
{},
device
=
None
,
non_blocking
=
False
,
prepare_batch
=
ignite
.
engine
.
_prepare_batch
,
lr_scale
=
1.1
,
warmup_iters
=
50
):
prepare_batch
=
ignite
.
engine
.
_prepare_batch
,
lr_scale
=
1.1
,
warmup_iters
=
50
,
ls_mult
=
3
):
"""
Factory function for creating a trainer for supervised models.
l
Args:
model (`torch.nn.Module`): the model to train.
optimizer (`torch.optim.Optimizer`): the optimizer to use.
...
...
@@ -41,31 +41,40 @@ def create_adaptive_supervised_trainer(model, optimizer, loss_fn, metrics={},
model
.
train
()
if
engine
.
state
.
iteration
>
warmup_iters
:
prev_k
=
1
loss
=
None
new_ks_list
=
(
1
/
lr_scale
,
lr_scale
,)
with
torch
.
no_grad
():
for
new_k
in
new_ks_list
:
correct_model
(
prev_k
,
new_k
)
y_pred
=
model
(
x
)
loss0
=
loss
loss
=
loss_fn
(
y_pred
,
y
)
prev_k
=
new_k
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr'
,
optimizer
.
param_groups
[
0
][
'lr'
],
'*'
,
new_k
,
'loss'
,
loss
.
item
())
if
loss0
<
loss
or
(
loss0
==
loss
and
engine
.
state
.
iteration
%
2
):
new_k
=
new_ks_list
[
0
]
correct_model
(
prev_k
,
new_k
)
for
group
in
optimizer
.
param_groups
:
group
[
'lr'
]
*=
new_k
if
engine
.
state
.
iteration
%
2
:
new_k
=
1
/
lr_scale
else
:
new_k
=
lr_scale
for
group
in
optimizer
.
param_groups
:
group
[
'lr'
]
*=
new_k
else
:
prev_k
=
new_k
=
1
if
engine
.
state
.
iteration
>
1
:
optimizer
.
step
()
if
engine
.
state
.
iteration
>
warmup_iters
:
with
torch
.
no_grad
():
y_pred
=
model
(
x
)
loss0
=
loss_fn
(
y_pred
,
y
)
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr * {:5.3}'
.
format
(
new_k
),
'loss'
,
loss0
.
item
())
prev_k
=
new_k
new_k
=
1
/
new_k
correct_model
(
prev_k
,
new_k
)
optimizer
.
zero_grad
()
y_pred
=
model
(
x
)
loss
=
loss_fn
(
y_pred
,
y
)
loss
.
backward
()
optimizer
.
step
()
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr'
,
optimizer
.
param_groups
[
0
][
'lr'
],
'loss'
,
loss
.
item
())
if
engine
.
state
.
iteration
>
warmup_iters
:
with
torch
.
no_grad
():
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr * {:5.3}'
.
format
(
new_k
),
'loss'
,
loss
.
item
())
if
loss
<
loss0
or
(
loss
==
loss0
and
engine
.
state
.
iteration
%
2
):
for
group
in
optimizer
.
param_groups
:
group
[
'lr'
]
*=
new_k
/
prev_k
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr'
,
optimizer
.
param_groups
[
0
][
'lr'
],
'loss'
,
loss
.
item
())
return
y_pred
,
y
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment