Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
O
OvoTools
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
林帅浩
OvoTools
Commits
bb6d7739
Commit
bb6d7739
authored
Apr 03, 2019
by
IlyaOvodov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
v2 (works but not better then baseline)
parent
96ae71c2
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
82 deletions
+21
-82
adaptive_lr.py
ovotools/adaptive_lr.py
+21
-82
No files found.
ovotools/adaptive_lr.py
View file @
bb6d7739
...
...
@@ -4,7 +4,7 @@ import ignite
def
create_adaptive_supervised_trainer
(
model
,
optimizer
,
loss_fn
,
metrics
=
{},
device
=
None
,
non_blocking
=
False
,
prepare_batch
=
ignite
.
engine
.
_prepare_batch
,
lr_scale
=
2
):
prepare_batch
=
ignite
.
engine
.
_prepare_batch
,
lr_scale
=
1.1
,
warmup_iters
=
50
):
"""
Factory function for creating a trainer for supervised models.
...
...
@@ -35,98 +35,37 @@ def create_adaptive_supervised_trainer(model, optimizer, loss_fn, metrics={},
d_p
=
p
.
grad
.
data
p
.
data
.
add_
(
-
group
[
'lr'
]
*
(
new_k
-
prev_k
),
d_p
)
def
_update1
(
engine
,
batch
):
model
.
train
()
optimizer
.
zero_grad
()
def
_update
(
engine
,
batch
):
x
,
y
=
prepare_batch
(
batch
,
device
=
device
,
non_blocking
=
non_blocking
)
y_pred
=
model
(
x
)
loss
=
loss_fn
(
y_pred
,
y
)
loss
.
backward
()
optimizer
.
step
()
prev_k
=
1
new_k
=
lr_scale
multiply_k
=
True
print
(
'epoch'
,
engine
.
state
.
epoch
,
'iter'
,
engine
.
state
.
iteration
,
'base'
,
optimizer
.
param_groups
[
0
][
'lr'
],
1
,
loss
)
if
engine
.
state
.
epoch
<=
1
:
return
y_pred
,
y
model
.
train
()
with
torch
.
no_grad
():
while
True
:
correct_model
(
prev_k
,
new_k
)
y_pred2
=
model
(
x
)
loss2
=
loss_fn
(
y_pred2
,
y
)
print
(
'new '
,
optimizer
.
param_groups
[
0
][
'lr'
],
new_k
,
loss2
)
if
loss2
>=
loss
:
correct_model
(
new_k
,
prev_k
)
if
multiply_k
and
prev_k
==
1
:
multiply_k
=
False
new_k
=
prev_k
/
lr_scale
else
:
break
else
:
y_pred
=
y_pred2
loss
=
loss2
if
engine
.
state
.
iteration
>
warmup_iters
:
prev_k
=
1
loss
=
None
new_ks_list
=
(
1
/
lr_scale
,
lr_scale
,)
with
torch
.
no_grad
():
for
new_k
in
new_ks_list
:
correct_model
(
prev_k
,
new_k
)
y_pred
=
model
(
x
)
loss0
=
loss
loss
=
loss_fn
(
y_pred
,
y
)
prev_k
=
new_k
if
multiply_k
:
new_k
*=
lr_scale
else
:
new_k
/=
lr_scale
for
group
in
optimizer
.
param_groups
:
group
[
'lr'
]
*=
prev_k
print
(
'fin '
,
optimizer
.
param_groups
[
0
][
'lr'
],
loss
)
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr'
,
optimizer
.
param_groups
[
0
][
'lr'
],
'*'
,
new_k
,
'loss'
,
loss
.
item
())
if
loss0
<
loss
or
(
loss0
==
loss
and
engine
.
state
.
iteration
%
2
):
new_k
=
new_ks_list
[
0
]
correct_model
(
prev_k
,
new_k
)
for
group
in
optimizer
.
param_groups
:
group
[
'lr'
]
*=
new_k
return
y_pred
,
y
def
_update
(
engine
,
batch
):
model
.
train
()
optimizer
.
zero_grad
()
x
,
y
=
prepare_batch
(
batch
,
device
=
device
,
non_blocking
=
non_blocking
)
y_pred
=
model
(
x
)
loss
=
loss_fn
(
y_pred
,
y
)
loss
.
backward
()
optimizer
.
step
()
prev_k
=
1
new_k
=
lr_scale
multiply_k
=
True
print
(
'epoch'
,
engine
.
state
.
epoch
,
'iter'
,
engine
.
state
.
iteration
,
'base'
,
optimizer
.
param_groups
[
0
][
'lr'
],
1
,
loss
.
item
())
if
engine
.
state
.
epoch
<=
1
:
return
y_pred
,
y
with
torch
.
no_grad
():
while
True
:
correct_model
(
prev_k
,
new_k
)
y_pred2
=
model
(
x
)
loss2
=
loss_fn
(
y_pred2
,
y
)
print
(
'new '
,
optimizer
.
param_groups
[
0
][
'lr'
],
new_k
,
loss2
.
item
())
if
loss2
>=
loss
:
correct_model
(
new_k
,
prev_k
)
if
multiply_k
and
prev_k
==
1
:
multiply_k
=
False
new_k
=
prev_k
/
lr_scale
else
:
break
else
:
y_pred
=
y_pred2
loss
=
loss2
prev_k
=
new_k
break
'''
if multiply_k:
new_k *= lr_scale
else:
new_k /= lr_scale
'''
for
group
in
optimizer
.
param_groups
:
group
[
'lr'
]
*=
prev_k
print
(
'fin '
,
optimizer
.
param_groups
[
0
][
'lr'
],
loss
)
print
(
'iter
\t
{}.{}'
.
format
(
engine
.
state
.
epoch
,
engine
.
state
.
iteration
),
'lr'
,
optimizer
.
param_groups
[
0
][
'lr'
],
'loss'
,
loss
.
item
())
return
y_pred
,
y
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment